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I. INTRODUCTION 
 
Machine Learning (ML) and Neural Networks (NN) have proven to be 
highly versatile and applicable to a broad variety of engineering 
problems in solid mechanics [1, 2]. The present talk gives an overview 
of recent trends in this field and shows some application examples. 
 
II. EXAMPLE I: CANN-DEM FRAMEWORK  
   
A generic NN-approach consisting of the Deep Energy Method (DEM) 
and Constitutive Artificial Neural Networks (CANN) has been 
investigated for elastostatic simulations as an alternative to the 
traditional Finite Element Method (FEM). No explicit material model 
is required since the CANN replaces analytical expressions describing 
the material behavior. The approach is trained based on a small number 
of deformation states and corresponding boundary conditions and can 
be used in further simulations on a structural level thereafter. The tests 
presented have applied a two-, a four- and a twelve-parameter CANN 
for an incompressible and a compressible Neo-Hookean material. The 
DEM has been conducted with one, four and six deformation states, 
respectively on 100 sample points as well as for a three-dimensional 
T-shaped structure. 
The achieved results show that the coupled CANN-DEM architecture 
works robustly and efficiently. This also applies to the process of 
automatic material identification. The resulting CANN models 
generalize well for loading conditions which are not part of the training 
data. Different than observed in some other approaches, consistently 
good agreements between the trained CANNs and original material 
models indicate that there is no influence of the CANN initialization 
on the final results.  
 
III. EXAMPLE II: oPINN 
 
A new ML architecture, namely the oscillatory Physics-Informed 
Neural Network (oPINN) has been introduced for the numerical 
investigation of oscillating continua.   The approach carries out a modal 
analysis of a structure alongside with the transient analysis.  
The numerical validation has been carried out on three different test 
cases of the wave equation with comparison to analytical 
approximations of the solution as well as to a numerical reference 
solution based on the conventional Adams predictor-corrector time 
stepping scheme. The results show that the reference solution and the 
oPINN can capture the characteristic behavior of continua subjected to 
free oscillations as well as to harmonic excitation with good agreement 
and accuracy. In numerically more challenging cases like a saw tooth 
displacement, the oPINN demonstrates its higher numerical accuracy 
emphasized by the consistent conservation of energy. This can be 
attributed to the iterative solution procedure for all time steps in 
parallel which enables the use of symmetric difference stencils in time, 
whereas conventional multi-step algorithm only can apply one-sided 
difference stencils and are bound by the Dahlquist barriers. For the 
further optimization of accuracy, an additional contribution to the loss 

term stipulating the conservation of energy has been suggested and 
demonstrated to be effective. The relative error of the amplitudes for 
the sawtooth test case amounts to 7.3%, whereas the relative error stays 
below 5% for the numerically less challenging test cases.  
Moreover, the potential of transfer learning has been investigated.  This 
step results in better accuracy and allows to speed up the calculations 
for a series of related tasks exploiting the similarity between 
neighbouring solutions and makes use of the adaptive nature of NN 
training. The results furthermore show its efficacy in calculating 
solutions for comparatively stiff problems. The suggested architecture 
of the NN is designed to obtain the modal properties (eigenfrequencies, 
eigenshapes, amplitudes) of the structure as well as the transient 
simulation result.  
 
IV. EXAMPLE III: STATISTICAL HOMOGENIZATION  
 
The final example deals with the statistical homogenization methods 
evaluating the effective response of heterogeneous materials to 
different cases of loading. A key challenge in applying these methods 
is the choice of a suitable probability function that accurately captures 
the material’s spatial correlations [5]. To address this open issue, we 
propose a machine learning based approach to identify a correct two-
point correlational descriptor. A combination of neural networks is 
used to extract the probability functions from the microstructure image 
focusing purely on the geometry of the given structure. By coupling 
fully connected neural networks (FCNN) and a convolutional neural 
network (CNN), both trained simultaneously, our adaptable approach 
significantly reduces the data requirements, allowing for effective 
training with a comparably small data set. 
 
V REFERENCES 
 
[1] S. Hildebrand and S. Klinge, "Comparison of neural FEM and 
neural operator methods for applications in solid mechanics," Neural 
Comput. & Applic, vol. 11, pp. 16657–16682, 2024. 
DOI:https://doi.org/10.1007/s00521-024-10132-2 
[2] S. Hildebrand and S. Klinge, "Hybrid data-driven and physics-
informed regularized learning of cyclic plasticity with neural 
networks," Mach. Learn.: Sci. Technol., vol. 5, pp. 045058, 2024. URL 
https://iopscience.iop.org/article/10.1088/2632-2153/ad95da 
[3] S. Hildebrand, J. G. Friedrich, M. Mohammadkhah and S. Klinge, 
"Coupled CANN-DEM simulation in solid mechanics," Mach. Learn.: 
Sci. Technol., vol. 6, pp. 015038, 2025. URL 
https://doi.org/10.1088/2632-2153/adaf74 
[4] S. Hildebrand, J. Sachsendal and S. Klinge, "Simulating vibrations 
of continua with oscillatory Physics-Informed Neural Networks 
(oPINN)," (submitted). 
[5] L. Schmollack and S.Klinge, , "A hybrid CNN-FCNN surrogate 
model for spatial correlations in two-phase composite materials," 
(submitted). 

mailto:sandra.klinge@tu-berlin.de
https://iopscience.iop.org/article/10.1088/2632-2153/ad95da
https://doi.org/10.1088/2632-2153/adaf74

